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ABSTRACT: Advanced sensor technology is widely used in
aquatic monitoring and research. Most applications focus on
temporal variability, whereas spatial variability has been
challenging to document. We assess the capability of water
chemistry sensors embedded in a high-speed water intake system
to document spatial variability. This new sensor platform
continuously samples surface water at a range of speeds (0 to
>45 km h−1) resulting in high-density, mesoscale spatial data.
These novel observations reveal previously unknown variability
in physical, chemical, and biological factors in streams, rivers, and
lakes. By combining multiple sensors into one platform, we were able to detect terrestrial−aquatic hydrologic connections in a
small dystrophic lake, to infer the role of main-channel vs backwater nutrient processing in a large river and to detect sharp
chemical changes across aquatic ecosystem boundaries in a stream/lake complex. Spatial sensor data were verified in our
examples by comparing with standard lab-based measurements of selected variables. Spatial fDOM data showed strong
correlation with wet chemistry measurements of DOC, and optical NO3 concentrations were highly correlated with lab-based
measurements. High-frequency spatial data similar to our examples could be used to further understand aquatic biogeochemical
fluxes, ecological patterns, and ecosystem processes, and will both inform and benefit from fixed-site data.

■ INTRODUCTION

Advanced sensor technology has led to new and unexpected
insights into ecosystem processes that may not have been
possible with previous techniques.1,2 Powerful networks of
semiautonomous sensors (e.g., FLUXNET, NEON) are
increasing our ability to measure, model, and develop theory
of biogeochemistry, hydrology, and ecosystem function.
Meanwhile, lowering sensor costs and increasing the ease of
use are enabling smaller groups and individual investigators to
observe important parameters at much-needed scales and
frequency. Pervasive examples of sensor applications in aquatic
systems include monitoring of riverine dissolved oxygen and
water discharge (by the U.S. Geological Survey and others) and
monitoring of lake chemical and physical characteristics such as
dissolved oxygen, wind speed, and water temperature by the
Global Lake Ecological Observatory Network (GLEON).
Although sensor technology is becoming common in

limnological research, current applications focus almost entirely
on temporal pattern and variation. Spatial variability is rarely
documented with sensors because of the high investment costs
for the spatial replication of such infrastructure.3 In contrast,
spatial patterns have been documented for many years in
coastal environments and ocean basins from large networks of
sensors (e.g., Global Drifter Program, autonomous underwater
vehicles) or from cooperative research cruises. However, unlike
the open ocean, there are tens to hundreds of millions of inland

water bodies,4 and they are extremely diverse,5,6 thus
precluding easily integrated sampling techniques. Similarly,
spatial patterns within small inland waterbodies are not
observable with current remote-sensing technology (although
larger waterbodies are more easily imaged) and may change
over short time scales (hours), thus placing them in a
challenging intermediate zone in which few automated
observation tools are appropriate. Additionally, many important
attributes of freshwaters are not detectable with current remote
sensing technology, thus necessitating in situ tools.
In addition to logistical challenges, conceptualizations and

long-held assumptions of aquatic ecosystems limit our ability to
understand complex environmental phenomena. Our mental
models of lakes and rivers dictate “not only how data are
collected but also what data are collected and, most important,
what questions are asked”.7 For example, streams and rivers are
typically studied from a fixed location, emphasizing the role of
advection and transport of matter and energy. Less attention is
given to longitudinal variability despite broad awareness of its
influence.8 Lakes, on the other hand, are typically con-
ceptualized in the vertical dimension, emphasizing the roles
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of stratification and vertical mixing, thus partially disregarding
horizontal patterns. But what insights can be gained from
altering our frame of reference or expanding from single
locations? And how might we apply powerful sensor technology
to other spatial dimensions?
Past work has highlighted significant spatial variability of

water chemistry in individual aquatic ecosystems,3,9−12 but
there is a clear need to address spatial variability in additional
freshwater ecosystems13 and in a more efficient manner. The
goal of this paper is to present and evaluate a platform capable
of rapid spatial sampling of surface waters using current sensor
technology. While we are not the first to use sensor technology
on a boat,14,15 our platform allows for easy integration of
multiple sensors and allows for both low-speed and
unprecedented high-speed sampling. In addition to describing
this new device, our goal is to present and evaluate previously
unknown spatial patterns in an array of streams, rivers, and
lakes. We also provide suggestions for future applications in
support of scientific research, engineering, management, and
outreach. Our selected examples also address practical aspects
such as the use of spatial statistics, a consideration of aquatic
transition zones, and terrestrial−aquatic connections. Each of
these examples is geared toward the broad goal of better
understanding ecosystem pattern and process.

■ MATERIALS AND METHODS
Instrumentation. The Fast Limnology Automated Meas-

urement (FLAMe) platform is a novel flow-through system
designed to sample inland waters at both low (0 to ∼10 km
h−1) and high speeds (10 to >45 km h−1) (Figure 1). The
FLAMe consists of three components: an intake manifold that
attaches to the stern of a boat (having both slow- and high-
speed intakes, Figure 1 and Figure S1, Supporting Informa-
tion); a sensor and control box that contains hoses, valves, a
circulation pump and sensor cradles (Figure S2, Supporting
Information); and a battery bank to power the electrical
components. The boat-mounted intake manifold serves multi-
ple purposes. First, sensors are mounted inside the boat,
protecting them from potential damage. Second, the intake
system creates a constant, bubble-free water flow, thus
preventing any issues for optical sensors due to cavitation.
Finally, to analyze dissolved gases, a constant water source is
needed on board. Water flow via both the slow- and high-speed
intakes is regulated by the onboard impeller pump, allowing for
seamless switching between slow- and high-speed operations.
Any number of sensors could be integrated into the platform
with simple modifications and can be combined with common
limnological instruments such as acoustic depth-finders. In our
example applications we used a YSI EXO2 multiparameter
sonde (EXO2; Yellow Springs, OH) and a Satlantic SUNA V2
optical nitrate (NO3) sensor (Halifax, NS, Canada), both

Figure 1. Photograph of the fast limnology automated measurement (FLAMe) platform water intake system attached to a moving boat; inset is a
computer rendering highlighting the two intake ports not visible in the photograph.
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integrated into the control box plumbing with flow-through
cells available from the manufacturer. Additionally, a Los Gatos
Research ultraportable greenhouse gas analyzer (UGGA)
(cavity enhanced absorption spectrometer; Mountain View,
CA) was used to measure the dry mole fraction of carbon
dioxide (CO2) dissolved in surface water by equilibrating water
with a small headspace using a sprayer-type equilibration
system that has previously been shown to have fast response
times relative to other designs16 (Figure S1, Supporting
Information). Both the EXO2 and the UGGA are capable of
logging data at 1 Hz. Because the SUNA was operated out of
the water and on a boat during warm periods, data were
collected less frequently (∼0.1 Hz) to minimize lamp-on time
and avoid the lamp temperature cutoff of 35 °C. The EXO2
sonde uses a combination of electrical and optical sensors for
specific conductivity, water temperature, pH, dissolved oxygen,
turbidity, fluorescent dissolved organic matter (fDOM),
chlorophyll-a fluorescenece, and phycocyanin fluorescence.
The SUNA instrument measures NO3 using in situ ultraviolet
spectroscopy between 190 and 370 nm and has a detection
range of 0.3−3000 μM NO3, and a precision of 2 μM NO3. The
UGGA has a reported precision of 1 ppb (by volume). In order
to translate time-series data from the instruments into spatial
data, we also logged latitude and longitude at 1 Hz with a global
positioning system (GPS) with the Wide Area Augmentation
System (WAAS) functionality enabled allowing for <3 m
accuracy for 95% of measured coordinates. Synchronized time
stamps from the EXO2, UGGA, SUNA, and GPS were used to
combine data streams into a single spatially referenced data set.
The FLAMe platform was tested with a 5 m long research

boat under a wide range of velocities (idling to >45 km h−1)
and wave conditions on Lake Mendota, WI. We found that the
low-draft of the intake system allowed for unencumbered
operation of the boat with no noticeable impacts on the boat’s
handling or top speed. We ran a simple set of experiments to
determine the residence time of the system and the overall
response time of the EXO2 and UGGA sensors integrated into
the platform (Supporting Information). After determining first-
order response characteristics of each sensor, we tested and
applied an ordinary differential equation method to correct the
raw data for significant changes in water input resulting in
higher accuracy spatial data (Supporting Information). The
goal of this paper was not to evaluate individual sensor accuracy
and precision; however, we did address sensor vs wet chemistry
(dissolved fraction) measurements in two selected examples to
determine the general applicability of the platform. We have
not yet assessed the platform’s ability to properly collect and
analyze larger particles. We used the FLAMe throughout the
summer of 2014 on four distinct aquatic ecosystems, including
a small dystrophic lake, a stream/lake complex, a medium-sized
eutrophic lake, and a managed reach of the upper Mississippi
River (Table 1). Each of these applications demonstrates the
spatial variability of surface water chemistry and the flexibility of

FLAMe for limnological research. Although we typically ran all
instruments at 1 Hz, we present parameters selectively for
brevity.

Survey 1: Dystrophic Lake Chemical Suite. In our first
example, we sampled a small dystrophic lake (Trout Bog, 1.1
ha) in northern Wisconsin on 15 August 2014 using the slow-
speed system attached to a small boat (travel speeds <10 km
h−1). The sampling took approximately 45 min. We present
variables collected with the EXO2 and UGGA in this example.
Trout Bog is surrounded by a peat wetland and has a very small
contributing watershed area. A maximum depth of 7.8 m
combined with high dissolved organic carbon (DOC)
concentrations and a limited wind fetch leads to stable thermal
stratification in summer. Many chemical and physical
parameters are expected to covary in this lake. But how well
does a single sampling location (the lake center) represent the
lake as a whole? We ask specifically, what is the scale of spatial
autocorrelation? To answer this question, we used semivariance
analysis and semivariogram modeling (ArcGIS Geostatistical
Analyst toolbox). Stable, Gaussian, or spherical empirical
semivariogram models were chosen on the basis of their
relative ability to fit the data using an iterative approach. We
focus our analysis on the empirical semivariogram range, the
distance at which variables are no longer spatially autocorre-
lated, which can also be thought of as the average “patch” size.9

We used the results of semivariogram modeling to interpolate
each parameter for the entire lake surface with ordinary kriging
procedures using a 33% randomized subset of the complete
data set (n = 3760).

Survey 2: Stream/Lake CO2 and pH. In our second
example, we present CO2 and pH data from a stream/lake
complex in northern Wisconsin. Sampling occurred in the
morning to early afternoon on 24 and 25 July 2014. We used
the slow-speed FLAMe system attached to a small boat (travel
speeds <10 km h−1). This ecosystem is a primary study site for
the North Temperate Lakes Long term Ecological Research
(NTL-LTER) and the U.S. Geological Survey (USGS) Water,
Energy and Biogeochemical Budgets program. Water in this set
of connected aquatic features originates primarily as upwelling
groundwater in the spring ponds to the east, with flow
continuing through a wide wetland which then transitions into
a forested reach downstream of a USGS gaging station
(05357206). Past the gaging station, the stream then flows
into the first basin of Allequash Lake, through the second basin
to the west, and into the lower section of Allequash Creek
before entering the largest lake in the basin, Trout Lake.
Surface CO2 and pH are monitored at the gaging station along
Allequash Creek as part of ongoing research objectives
regarding cycling of elements such as carbon (C). In order to
understand larger scale patterns of ecosystem metabolism and
gas flux, we need to understand how temporal data relate to
spatial data. We ask how do CO2 and pH vary along a stream-
lake flowpath?

Table 1. Survey Location Attributes and Sampling Information

survey location latitude longitude
lake area
(ha)

max depth
(m)

river discharge
(m3 s−1) parameters presented

Trout Bog Lake (Vilas County, WI) 46.04113 −89.68629 1.1 7.9 all EXO2 and UGGA
data

Allequash Creek and Allequash Lake (Vilas County,
WI)

46.03833 −89.62261 168 8 0.09 pCO2, pH

Lake Mendota (Madison, WI) 43.10847 −89.41532 3940 25.3 fDOM
Mississippi River, Navigation Pool 8 (MN and WI) 43.68184 −91.24163 1.8 (mean) 1893.8 conductivity, NO3
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Survey 3: Lake fDOM and Dissolved Organic Carbon.
In our third example, we present fDOM data collected between
08:00 and 12:00 on 4 July 2014 on Lake Mendota (Madison,
WI), a medium-sized eutrophic lake. We sampled the majority
of the lake at high speed (>40 km h−1) in order to capture a full
spatial “snapshot”. In addition to the sensor data, we collected
discrete water samples for DOC concentration. We predicted
that fDOM and DOC would be positively correlated in this
ecosystem.17 Water chemistry samples were collected into
plastic bottles while the boat was stopped and free-floating
using the slow-speed intake and were then capped and stored
on ice. Each sample was filtered (0.45 μm) in the lab within 3 h
of collection. Filtered DOC samples were analyzed according to
protocols established by the NTL-LTER (https://lter.
limnology.wisc.edu) using a Shimadzu TOC-V-csh total organic
carbon analyzer. Using this data set, we ask how homogeneous
is the surface mixed layer with respect to DOC concentrations?
We again use semivariogram modeling and focus on the range
parameter.
Survey 4: River Conductivity and NO3. In our final

example, we present conductivity and NO3 data collected on
Navigation Pool 8 of the Upper Mississippi River (near La
Crosse, WI) on 21−22 July 2014. We primarily used the high-
speed system (>30 km h−1) to capture spatial variability. Due to
the large size of the reach, we combined data collected over the
course of 2 days, primarily in the morning and early afternoon

periods. River discharge (measured at Dam 8) during our
sampling was 1893.8 and 1775.4 m3 s−1 on the 21st and 22nd,
respectively. Our sampling path included sections above and
below Lock and Dam 7, the main navigation channel, three
tributaries (Black River, La Crosse River, and Root River), two
backwater lakes (Target Lake and Lawrence Lake), a backwater
channel (Turtle Slough), and immediately upstream from Lock
and Dam 8. In this example, we ask how does NO3 vary among
the major inputs to Pool 8? Additionally, we investigated how
NO3 compared between the various backwater river sections
and the main channel. Using conductivity as a conservative
tracer, we identified locations with potentially elevated NO3

cycling.
To confirm SUNA measurements, we collected discrete

water samples at 10 locations spanning the range of SUNA
NO3. River water was filtered (0.45 μm) into new 20 mL plastic
scintillation vials. Samples were stored on ice and frozen within
6 h of collection. Lab NO3 samples were analyzed according to
protocols established by the North Temperate Lakes LTER
using an Astoria-Pacific Astoria 2 segmented flow autoanalyzer
and reported as mg NO3−N L−1. We assessed the relationship
between the traditional lab method and the SUNA sensor using
linear regression.

Figure 2. Results of FLAMe survey of a small dystrophic lake (Trout Bog) showing all measured variables from the EXO2 and UGGA instruments;
values were interpolated at the 0.25 m scale using semivariogram analysis (Table 2) and ordinary kriging; top-left panel includes the sampling path
and background aerial imagery.
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■ RESULTS AND DISCUSSION

Novel observations of water chemistry using the FLAMe
platform revealed both predictable and unexpected spatial
patterns among a diverse set of aquatic ecosystems. Key
findings included the observation that although water chemistry
exhibits spatial autocorrelation, patch size was variable (e.g., ∼
10 m in Trout Bog to >1000 m in Lake Mendota), and that
fixed long-term sampling locations may not adequately account
for spatial variability in surface waters (e.g., Allequash Creek).
These findings call for a shift toward more extensive spatial
characterization of aquatic ecosystems using sensor technology,
which can also benefit from and inform current fixed-site
applications.
Survey 1: Dystrophic Lake Chemical Suite. We

observed unexpected high variability in surface water chemistry
on Trout Bog Lake in northern Wisconsin (Figure 2). Surface
water temperature varied from 20.2 to 25.8 °C with a distinct
spatial pattern where warmest temperatures were observed in
littoral regions on the western side of the lake, transitioning to
cooler temperatures to the southeast. Notably, we found that
the temperature variability on this extremely small lake (1.1 ha)
was nearly identical to the variability observed on the larger
Lake Mendota (39.4 km2) on 4 July 2014 (data not shown).
Dissolved oxygen was undersaturated with respect to the
atmosphere (75.2−93.8%), with least values in the southeastern
littoral regions. Surface pH was low ranging from 4.56 to 4.61,
with greatest values in the littoral zone and least values in
pelagic surface waters. Surface conductivity was relatively low
(34.1−36.2 μS cm−1) but showed distinct spatial patterns with
greatest values in the littoral regions gradually decreasing
toward the center of the lake. Phytoplankton pigments
(chlorophyll-a and phycocyanin) had somewhat different
patterns relative to other chemical and physical parameters.
Both chlorophyll-a and phycocyanin fluorescence were elevated
in the center of the lake but consistently low elsewhere.
Turbidity was relatively low (0 to 26.1 FNU) with elevated
values mainly in the lake center. Surface fDOM illustrated a
similar littoral-pelagic gradient as other parameters with
distinctly elevated values in the southeastern littoral region.
Finally, CO2 also showed a littoral−pelagic gradient and a
southeastern littoral maximum. Analysis of spatial autocorrela-
tion (semivariogram modeling) for each parameter revealed a
wide array of patch sizes (semivariogram range) between 1.53
m (phycocyanin) and 59.09 m (pH) (Table 2). For most
variables, parcels of water ∼10 m away were uncorrelated with
their neighbors.
Much of the observed variation in Trout Bog Lake can be

attributed to pelagic vs littoral differences, as the lake is only

115 m wide. We suspect that spatial gradients are driven
primarily by hydrologic interactions with the surrounding
wetlands and aquifer, which is spatially distinct (inferred
groundwater loading in the southeast). Small seepage lakes
such as Trout Bog are typically treated in a 1D framework18

and are believed to be well-mixed horizontally. However, small
lakes have relatively large perimeters relative to their area,
which may result in greater relative influence of adjacent
terrestrial systems.19 Together, these high-resolution spatial
data challenge conceptions of horizontal homogeneity in the
smallest lakes. In a practical sense, these observations could be
expanded to other inland waters to understand how typical
pelagic (deep-hole) sampling locations reflect the conditions of
a lake as a whole. Future research applications could focus on
understanding the role of horizontal connectivity with wetland
and terrestrial environments to understand the contribution of
allochthonous organic matter and discrete nutrient sources
fueling primary productivity in the lake center.

Survey 2: Stream/Lake pCO2 and pH. Similar to the
findings from the small dystrophic lake, we observed large
spatial variability along a stream/lake watercourse. We
measured greatest concentrations of CO2 in the forested
reach of Allequash Creek (>3000 μatm) just before the inlet to
Trout Lake (Figure 3). Lowest values were observed in the
forested reach upstream of Allequash Lake (<829 μatm), with
intermediate values in the upper wetland reach downstream of
the spring ponds and interspersed among small beaver dams.
Observed CO2 concentrations were within the range of
seasonal variability previously documented for Allequash
Creek and other streams in the region.20 However, variability
during this single sampling (661−4971 μatm) along a relatively
short flowpath (∼10 km) was surprisingly large relative to the
variability observed for 52 streams (201−15500 μatm) in the
greater Northern Highlands Lake District (NHLD; ∼6400
km2).20 These patterns are likely driven by a combination of
biological in-stream CO2 production and consumption,
groundwater CO2 delivery, and gas exchange with the
atmosphere that are known to vary spatially in NHLD
streams.20 In support of our CO2 data, longitudinal pH
patterns were very similar, but opposite to CO2, indicating the
interrelationship between pH and the carbonate system (Figure
3). Overall variability in pH was high, differing by nearly 2
orders of magnitude (2 pH units) between the upper basin of
Allequash Lake and the lower, forested reach upstream of Trout
Lake. It is clear that the long-term USGS monitoring site on
Allequash Creek is different than upstream and downstream
reaches, and transitions between these aquatic features are
surprisingly sharp. Knowledge of both temporal patterns
(single-station sensor data) and of spatial variability will help
inform ongoing investigations of stream C cycling and may lead
to improved estimates of aquatic gas flux.

Survey 3: Lake fDOM and Dissolved Organic Carbon.
Unlike water chemistry patterns observed at other survey sites,
we documented relatively consistent patterns in the pelagic
zone of Lake Mendota. Surface fDOM was consistently low in
the central portion of the lake. However, concentrations along
the river inlet were much greater (Figure 4). As expected,
measured fDOM was strongly correlated with wet chemical
DOC analyses (inset Figure 4). This result suggests that with
proper calibration of fDOM/DOC relationships for individual
waterbodies,17,21 the FLAMe platform is capable of rapid, high-
resolution spatial characterization of DOC in aquatic
ecosystems. We speculate that the low fDOM values where

Table 2. Fitted Semivariogram Range from Trout Bog
FLAMe Data (See Figure 2)

parameter range (m)

temp (C) 15.12
DO (% sat.) 6.44
pH 59.09
conductivity (μS/cm) 4.429
chlorophyll a (RFU) 11.77
phycocyanin (RFU) 1.532
turbidity (FNU) 1.73
fDOM (QSU) 7.307
CO2 (μatm) 2.34
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DOC was >5.5 mg L−1 indicates the presence of autochthonous
(algal-derived) DOM, which typically has lower aromaticity
relative to terrestrially derived material.22 The stark contrast
between greatest river fDOM concentrations and least values in
the adjacent pelagic zone lead to interesting questions regarding
the transport and fate of the presumably terrestrial riverine

carbon load. The entire lake sampling took 4 h. Therefore,
much of the variability shown in Figure 4 was likely due to
spatial patterns, as opposed to temporal change. Although
fDOM varied spatially across the pelagic zone, DOC only
varied by ∼1 mg L−1. In support of our qualitative examination,
semivariogram modeling revealed a large range parameter for

Figure 3. pH and CO2 map from the Allequash Creek and Allequash Lake FLAMe survey.

Figure 4.Map of fluorescent dissolved organic matter (fDOM) on Lake Mendota using ordinary kriging; inset shows the linear relationship between
fDOM and dissolved organic carbon concentrations (DOC) based on matched discrete wet chemistry samples; potential algal-influenced outliers are
circled.
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fDOM (1070 m), suggesting relatively homogeneous fDOM
over large scales in this lake. Through repeated spatial sampling
and calibration of fDOM/DOC relationships, this approach
could be used to understand spatial patterns of DOC
production and consumption in lakes. These fDOM/DOC
relationships along with fDOM and additional optical spatial
snapshots could also be used to ground-truth and/or calibrate
powerful remote sensing approaches that are currently limited
by the spatial resolution of discrete water chemistry sampling.23

Survey 4: River Conductivity and NO3. We observed
distinct spatial variability in surface water NO3 concentrations
in Pool 8 of the Upper Mississippi River using high-speed
optical techniques. Given that optical NO3 was strongly
correlated with lab-measured NO3 (Figure 5 (inset); df = 8, t
= 49.4, p < 0.001, r2 = 0.99), we can confidently use the optical
data set to examine spatial concentration patterns and NO3

processing. NO3 concentrations outside of the main channel
(0.35−2.68 mg NO3−N L−1) varied more than in the main
channel (1.09−1.84 mg NO3−N L−1; Figure 5). A comparison
of NO3 in the major tributaries showed least concentrations in

the Black River (0.50−0.93 mg NO3−N L−1), while the Root
River (4.20 mg NO3−N L−1) had much greater concentrations
than the main channel. The large differences between
tributaries was not surprising as the Root River catchment is
dominated by row crop agriculture and is known to have
elevated NO3 concentrations,

24 whereas the Black River flows
through a large lake and wetland before converging with the
main river channel.
Using measured conductivity from each location within the

river we can assess the relative contribution of multiple NO3

sources and assess N cycling using conservative mixing.
Deviations between observed and predicted (conservative
mixing) NO3 concentrations are identified as locations of net
consumption or production. For example, the two backwater
lakes (Target Lake and Lawrence Lake) had 10−50% of the
NO3 concentration observed in the proximate main channel.
This apparent reduction in NO3 could be explained by variation
in source water or consumption due to nitrogen cycling
processes. Given that conductivity in these backwater lakes was
similar to the main channel (80−100%), we can attribute the

Figure 5. Map of conductivity and NO3 patterns from Navigation Pool 8 of the Upper Mississippi River; inset shows the strong linear relationship
between SUNA-derived NO3 and laboratory analysis of NO3 concentrations.
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reduction of NO3 to uptake and removal processes. Backwater
regions of Pool 8 have previously been identified as having
elevated denitrification capacity due to greater amounts of
sediment organic matter and greater biological uptake resulting
from N limitation in late summer.25,26 In contrast, main
channel NO3 concentrations were more homogeneous,
indicating the greater role of advection relative to uptake.27

Further identification of spatially explicit NO3 sources and sinks
(as well as process rates) in the Upper Mississippi River may
lead to a better understanding of the fate of anthropogenic
NO3. Somewhat surprisingly, NO3 variability in Pool 8 during a
single summer day (0.35−2.68 mg NO3−N L−1) was nearly
equivalent to the two-year range (0.22 to 2.97 mg NO3−N L−1)
observed in the Lower Mississippi River with a similar sensor
located at a fixed-station.28 Future work could simultaneously
assess the scales of spatial and temporal variability as they relate
to biogeochemical processes and ecosystem function.
Assessment and Future Applications. We have

presented several examples of pervasive spatial variability in
aquatic ecosystems using a novel sampling platform. These
examples of spatial water chemistry highlight some possibilities
of basic biogeochemical mapping that may be useful on their
own as a management tool. However, cartographic representa-
tions of these data sets are simply the first step in data
exploration, similar to making a histogram or scatterplot of
typical data. There is a clear need to translate spatial
representations of water chemistry into a process-based
understanding, and to address fundamental questions regarding
spatial variation.
Spatial sampling approaches like the one demonstrated here

can supplement and benefit from fixed-station time-series data
(streams and rivers), depth profiles (lakes), and other standard
aquatic data sets. Integration of these multiple approaches will
likely yield new insights and breakthroughs in the study of
freshwater ecosystems, but their assimilation will likely be
ecosystem and question-specific. The goal should not be to
eliminate fixed sensor installations or long-term sampling
schemes, but rather to supplement those with spatial snapshots
at the surface. Potential combinations include: sampling lake
temperature and dissolved oxygen during lake mixis using
depth-profiling buoys and spatial surveys to understand mixing
processes; tracking nutrient exchange between river channels
and backwaters in relation to changes in the hydrograph; and
tracing distinct water plumes in transit past observing stations.
Despite the ability to sample aquatic ecosystems at high

speeds using the FLAMe platform, care must be taken when
interpreting these results for larger ecosystems. Sampling events
lasting longer than a few hours will inevitably be impacted by
temporal variability in addition to spatial variability. For
instance, diel oxygen excursions driven by primary production
would impact the observed dissolved oxygen variability in space
if sampled over longer time periods (e.g., > 4 h). Our
assessments of spatial variability are also limited by the accuracy
and precision of the sensors used. While we have provided an
example of how to evaluate response times and correct these
high-frequency data (Supporting Information), evaluating
sensor performance in other applications is essential.
Further insights might be gained by altering reference frames

in support of scientific research, engineering, management, and
outreach. We suggest that the FLAMe platform could be used
to rapidly assess spatial variability before and after major events
(e.g., storms, stratification) and to inform future and ongoing
ecosystem studies. Gridded data (e.g., Figure 2) could be used

to ground-truth remote sensing products23,29 and ecosystem
models. Investigators could use the platform for efficient
reconnaissance of discrete chemical influences such as urban
discharges and other point sources.30 Development of
innovative calibrations and transfer functions could lead to
maps of socially valuable ecosystem metrics that could appeal to
the broader public. Further, time-series of spatially explicit data
could be leveraged to generate water forecasts (perhaps focused
on littoral areas) where there are potential health concerns
from harmful algal blooms and other water quality issues.
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